Distributed Immersed Boundary Simulation in Titanium

نویسندگان

  • Edward Givelberg
  • Katherine A. Yelick
چکیده

The immersed boundary method is a general technique for modeling elastic boundaries immersed within a viscous, incompressible fluid. The method has been applied to several biological and engineering systems, including large scale models of the heart and cochlea. These simulations have the potential to improve our basic understanding of the biological systems they model and aid in the development of surgical treatments and prosthetic devices. Despite the popularity of the immersed boundary method and the desire to scale the problems to accurately capture the details of the physical systems, parallelization for large scale distributed memory machine has proven challenging. The primary reason is a classic locality and load balance tradeoff that arises in distributing the immersed boundary data structure across processors. In this paper we describe a parallelized algorithm for the immersed boundary method that is designed for scalability on distributed memory multiprocessors and clusters of SMPs. It is implemented using the Titanium language, a Java-based high performance scientific computing. Our software package, called IB, takes advantage of the object-oriented features of Titanium to provide a framework for simulating immersed boundaries that separates the generic immersed boundary method code from the specific application features that define the immersed boundary structure and the forces that arise from those structures. Our results demonstrate the scalability of our design and the feasibility of large scale immersed boundary computations with the IB package.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of a Contractile Torus Simulation in Titanium

The purpose of this paper is to analyze the use of the Titanium language, a high-performance Java dialect, and parallel programming practices on an application of the Immersed Boundary (IB) Method for simulating biological processes. We will compare two Titanium implementations of the IB Method in terms of performance, developer productivity, and use of Titanium features. The first implementati...

متن کامل

A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows

Abstract   The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...

متن کامل

Modelling of the Dynamics of an immersed body in a microchannel with stenosis using the immersed boundary method

In the present study, the combination of lattice Boltzmann and immersed boundary methods is used to simulate the motion and deformation of a flexible body. Deformation of the body is studied in microchannel with stenosis and the effect of the flexibility changes on its deformation is investigated. The obtained results in the present manuscript show that by increasing the elasticity modulus, the...

متن کامل

A novel boundary condition for the simulation of the submerged bodies using lattice boltzmann method

In this study, we proposed a novel scheme for the implementation of the no-slip boundary condition in thelattice Boltzmann method (LBM) . In detail , we have substituted the classical bounce-back idea by the direct immersed boundary specification . In this way we construct the equilibrium density functions in such a way that it feels the no-slip boundaries . Therefore , in fact a kind of equili...

متن کامل

FORMATION AND GROWTH OF TITANIUM ALUMINIDE LAYER AT THE SURFACE OF TITANIUM SHEETS IMMERSED IN MOLTEN ALUMINUM

Abstract: titanium sheets in pure molten aluminum at 750 and X-Ray Diffraction Analysis results, TiAlintermetallic layer thickness increases slowly at primary stages. After that an enhanced growth rate occurs due to layercracking and disruption. Presumably, reaction starts with solving titanium into the molten aluminum causing intitanium super saturation and TiAlintermetallic layer which conseq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2006